
AN OVERVIEW OF
C++

1

OBJECTIVES

Introduction
What is object-oriented programming?
Two versions of C++
C++ console I/O
C++ comments
Classes: A first look
Some differences between C and C++
Introducing function overloading
C++ keywords
Introducing Classes

2

INTRODUCTION

C++ is the C programmer’s answer to
Object-Oriented Programming (OOP).
C++ is an enhanced version of the C
language.
C++ adds support for OOP without
sacrificing any of C’s power, elegance, or
flexibility.
C++ was invented in 1979 by Bjarne
Stroustrup at Bell Laboratories in Murray
Hill, New Jersey, USA. 3

INTRODUCTION (CONT.)
The elements of a computer language do not exist
in a void, separate from one another.
The features of C++ are highly integrated.
Both object-oriented and non-object-oriented
programs can be developed using C++.

4

WHAT IS OOP?
OOP is a powerful way to approach the
task of programming.
OOP encourages developers to decompose
a problem into its constituent parts.
Each component becomes a self-contained
object that contains its own instructions
and data that relate to that object.
So, complexity is reduced and the
programmer can manage larger programs.

5

WHAT IS OOP? (CONT.)

All OOP languages, including C++, share
three common defining traits:

Encapsulation
Binds together code and data

Polymorphism
Allows one interface, multiple methods

Inheritance
Provides hierarchical classification
Permits reuse of common code and data

6

TWO VERSIONS OF C++
A traditional-style C++ program -

7

#include <iostream.h>

int main()
{

/* program code */
return 0;

}

TWO VERSIONS OF C++ (CONT.)
A modern-style C++ program that uses the new-
style headers and a namespace -

8

#include <iostream>
using namespace std;

int main()
{

/* program code */
return 0;

}

THE NEW C++ HEADERS

The new-style headers do not specify filenames.
They simply specify standard identifiers that
might be mapped to files by the compiler, but
they need not be.

<iostream>
<vector>
<string>, not related with <string.h>
<cmath>, C++ version of <math.h>
<cstring>, C++ version of <string.h>

Programmer defined header files should end in
“.h”.

9

SCOPE RESOLUTION OPERATOR (::)
Unary Scope Resolution Operator

Used to access a hidden global variable
Example: usro.cpp

Binary Scope Resolution Operator
Used to associate a member function with its
class (will be discussed shortly)
Used to access a hidden class member variable
(will be discussed shortly)
Example: bsro.cpp

10

NAMESPACES

A namespace is a declarative region.
It localizes the names of identifiers to avoid name
collisions.
The contents of new-style headers are placed in
the std namespace.
A newly created class, function or global variable
can put in an existing namespace, a new
namespace, or it may not be associated with any
namespace

In the last case the element will be placed in the global
unnamed namespace.

Example: namespace.cpp

11

C++ CONSOLE I/O (OUTPUT)
cout << “Hello World!”;

printf(“Hello World!”);
cout << iCount; /* int iCount */

printf(“%d”, iCount);
cout << 100.99;

printf(“%f”, 100.99);
cout << “\n”, or cout << ‘\n’, or cout <<
endl

printf(“\n”)
In general, cout << expression;

12Do we smell polymorphism here???

cout ???

Shift right operator ???

How does a shift right
operator produce output

to the screen?

C++ CONSOLE I/O (INPUT)
cin >> strName; /* char strName[16] */

scanf(“%s”, strName);
cin >> iCount; /* int iCount */

scanf(“%d”, &iCount);
cin >> fValue; /* float fValue */

scanf(“%f”, &fValue);
In general, cin >> variable;

13Hmmm. Again polymorphism.

C++ CONSOLE I/O (I/O CHAINING)
cout << “Hello” << ‘ ‘ << “World” << ‘!’;
cout << “Value of iCount is: ” << iCount;
cout << “Enter day, month, year: ”;

cin >> day >> month >> year;
cin >> day;
cin >> month;
cin >> year

14What’s actually happening here? Need to learn more.

C++ CONSOLE I/O (EXAMPLE)

15

include <iostream>
int main()
{

char str[16];
std::cout << “Enter a
string: ”;
std::cin >> str;
std::cout << “You entered:
” << str;

}

include <iostream>
using namespace std;
int main()
{

char str[16];
cout << “Enter a string: ”;
cin >> str;
cout << “You entered: ”

<< str;
}

C++ COMMENTS

Multi-line comments
/* one or more lines of comments */

Single line comments
// …

16

CLASSES: A FIRST LOOK

General syntax -

17

class class-name
{

// private functions and variables
public:

// public functions and variables
}object-list (optional);

CLASSES: A FIRST LOOK (CONT.)
A class declaration is a logical abstraction
that defines a new type.
It determines what an object of that type
will look like.
An object declaration creates a physical
entity of that type.
That is, an object occupies memory space,
but a type definition does not.
Example: p-23.cpp, p-26.cpp, stack-test.c.

18

CLASSES: A FIRST LOOK (CONT.)
Each object of a class has its own copy of every
variable declared within the class (except static
variables which will be introduced later), but
they all share the same copy of member
functions.

How do member functions know on which object they
have to work on?

The answer will be clear when “this” pointer is introduced.

19

SOME DIFFERENCES BETWEEN C
AND C++

No need to use “void” to denote empty parameter
list.
All functions must be prototyped.
If a function is declared as returning a value, it
must return a value.
Return type of all functions must be declared
explicitly.
Local variables can be declared anywhere.
C++ defines the bool datatype, and keywords
true (any nonzero value) and false (zero).

20

INTRODUCING FUNCTION
OVERLOADING

Provides the mechanism by which C++ achieves one
type of polymorphism (called compile-time
polymorphism).
Two or more functions can share the same name as
long as either

The type of their arguments differs, or
The number of their arguments differs, or
Both of the above

21

INTRODUCING FUNCTION
OVERLOADING (CONT.)

The compiler will automatically select the correct
version.
The return type alone is not a sufficient
difference to allow function overloading.
Example: p-34.cpp, p-36.cpp, p-37.cpp.

22

Q. Can we confuse the compiler with
function overloading?

A. Sure. In several ways. Keep exploring C++.

C++ KEYWORDS (PARTIAL LIST)

23

bool
catch
delete
false
friend
inline
namespace
new
operator
private

protected
public
template
this
throw
true
try
using
virtual
wchar_t

INTRODUCING
CLASSES

24

CONSTRUCTORS
Every object we create will require some sort of
initialization.
A class’s constructor is automatically called by the
compiler each time an object of that class is created.
A constructor function has the same name as the
class and has no return type.
There is no explicit way to call the constructor.

25

DESTRUCTORS
The complement of a constructor is the destructor.
This function is automatically called by the compiler
when an object is destroyed.
The name of a destructor is the name of its class,
preceded by a ~.
There is explicit way to call the destructor but highly
discouraged.
Example : cons-des-0.cpp

26

CONSTRUCTORS & DESTRUCTORS
For global objects, an object’s constructor is called
once, when the program first begins execution.
For local objects, the constructor is called each time
the declaration statement is executed.
Local objects are destroyed when they go out of scope.
Global objects are destroyed when the program ends.
Example: cons-des-1.cpp

27

CONSTRUCTORS & DESTRUCTORS
Constructors and destructors are typically declared as
public.
That is why the compiler can call them when an object
of a class is declared anywhere in the program.
If the constructor or destructor function is declared as
private then no object of that class can be created
outside of that class. What type of error ?
Example: private-cons.cpp, private-des.cpp

28

CONSTRUCTORS THAT TAKE
PARAMETERS

It is possible to pass arguments to a constructor
function.
Destructor functions cannot have parameters.
A constructor function with no parameter is called the
default constructor and is supplied by the compiler
automatically if no constructor defined by the
programmer.
The compiler supplied default constructor does not
initialize the member variables to any default value;
so they contain garbage value after creation.
Constructors can be overloaded, but destructors
cannot be overloaded.
A class can have multiple constructors.
Example: cons-des-3.cpp, cons-des-4.cpp, cons-des-
5.cpp, cons-des-6.cpp 29

OBJECT POINTERS
It is possible to access a member of an object via a
pointer to that object.
Object pointers play a massive role in run-time
polymorphism (will be introduced later).
When a pointer is used, the arrow operator (->) rather
than the dot operator is employed.
Just like pointers to other types, an object pointer,
when incremented, will point to the next object of its
type.
Example: obj.cpp

30

IN-LINE FUNCTIONS
Functions that are not actually called but, rather, are
expanded in line, at the point of each call.
Advantage

Have no overhead associated with the function call
and return mechanism.
Can be executed much faster than normal functions.
Safer than parameterized macros. Why ?

Disadvantage
If they are too large and called too often, the
program grows larger.

31

IN-LINE FUNCTIONS

32

inline int even(int x)
{

return !(x%2);
}

int main()
{

if(even(10)) cout << “10 is
even\n”;
// becomes if(!(10%2))

if(even(11)) cout << “11 is
even\n”;
// becomes if(!(11%2))

return 0;
}

The inline specifier is a
request, not a command, to
the compiler.
Some compilers will not in-
line a function if it contains

A static variable
A loop, switch or goto
A return statement
If the function is recursive

AUTOMATIC IN-LINING
Defining a member function inside the class
declaration causes the function to automatically
become an in-line function.
In this case, the inline keyword is no longer
necessary.

However, it is not an error to use it in this situation.
Restrictions

Same as normal in-line functions.

33

AUTOMATIC IN-LINING

34

// Automatic in-lining
class myclass
{

int a;
public:

myclass(int n) { a = n; }
void set_a(int n) { a = n; } int
get_a() { return a; }

};

// Manual in-lining
class myclass
{

int a;
public:

myclass(int n);
void set_a(int n);
int get_a();

};
inline void myclass::set_a(int n)
{

a = n;
}

LECTURE CONTENTS

Teach Yourself C++
Chapter 1 (Full, with exercises)
Chapter 2.1, 2,2, 2.4, 2.6, 2.7

35

	An Overview of C++
	Objectives
	Introduction
	Introduction (cont.)
	What is OOP?
	What is OOP? (cont.)
	Two Versions of C++
	Two Versions of C++ (cont.)
	The New C++ Headers
	Scope Resolution Operator (::)
	Namespaces
	C++ Console I/O (Output)
	C++ Console I/O (Input)
	C++ Console I/O (I/O chaining)
	C++ Console I/O (example)
	C++ Comments
	Classes: A First Look
	Classes: A First Look (cont.)
	Classes: A First Look (cont.)
	Some Differences Between C and C++
	Introducing Function Overloading
	Introducing Function Overloading (cont.)
	C++ Keywords (partial list)
	Introducing Classes
	Constructors
	Destructors
	Constructors & Destructors
	Constructors & Destructors
	Constructors That Take Parameters
	Object Pointers
	In-line Functions
	In-line Functions
	Automatic In-lining
	Automatic In-lining
	Lecture Contents

