
A CLOSER LOOK AT
CLASSES

1

ASSIGNING OBJECTS
One object can be assigned to another provided
that both objects are of the same type.
It is not sufficient that the types just be
physically similar – their type names must be the
same.
By default, when one object is assigned to
another, a bitwise copy of all the data members is
made. Including compound data structures like
arrays.
Creates problem when member variables point to
dynamically allocated memory and destructors
are used to free that memory.
Solution: Copy constructor (to be discussed
later)
Example: assign-object.cpp

2

PASSING OBJECTS TO
FUNCTIONS

Objects can be passed to functions as arguments
in just the same way that other types of data are
passed.
By default all objects are passed by value to a
function.
Address of an object can be sent to a function to
implement call by reference.
Examples: From book

3

PASSING OBJECTS TO
FUNCTIONS

In call by reference, as no new objects are formed,
constructors and destructors are not called.
But in call value, while making a copy, constructors are
not called for the copy but destructors are called.
Can this cause any problem in any case?
Yes. Solution: Copy constructor (discussed later)
Example: obj-passing1.cpp, obj-passing2.cpp, obj-
passing-problem.cpp

4

RETURNING OBJECTS FROM
FUNCTIONS

The function must be declared as returning a class
type.
When an object is returned by a function, a temporary
object (invisible to us) is automatically created which
holds the return value.
While making a copy, constructors are not called for
the copy but destructors are called
After the value has been returned, this object is
destroyed.
The destruction of this temporary object might cause
unexpected side effects in some situations.
Solution: Copy constructor (to be discussed later)
Example: ret-obj-1.cpp, ret-obj-2.cpp, ret-obj-3.cpp 5

FRIEND FUNCTIONS
A friend function is not a member of a class but still has
access to its private elements.
A friend function can be

A global function not related to any particular class
A member function of another class

Inside the class declaration for which it will be a friend, its
prototype is included, prefaced with the keyword friend.
Why friend functions ?

Operator overloading
Certain types of I/O operations
Permitting one function to have access to the private
members of two or more different classes 6

FRIEND FUNCTIONS

7

class MyClass
{

int a; // private member
public:

MyClass(int a1) {
a = a1;

}
friend void ff1(MyClass obj);

};

// friend keyword not used
void ff1(MyClass obj)
{

cout << obj.a << endl;
// can access private

member ‘a’ directly
MyClass obj2(100);
cout << obj2.a << endl;

}
void main()
{
MyClass o1(10);
ff1(o1);

}

FRIEND FUNCTIONS
A friend function is not a member of the class for
which it is a friend.

MyClass obj(10), obj2(20);
obj.ff1(obj2); // wrong, compiler error

Friend functions need to access the members (private,
public or protected) of a class through an object of that
class. The object can be declared within or passed to
the friend function.
A member function can directly access class members.
A function can be a member of one class and a friend of
another.
Example : friend1.cpp, friend2.cpp, friend3.cpp

8

FRIEND FUNCTIONS

9

class YourClass; // a forward
declaration

class MyClass {
int a; // private member

public:
MyClass(int a1) { a = a1; }
friend int compare
(MyClass obj1, YourClass
obj2);

};
class YourClass {

int a; // private member
public:

YourClass(int a1) { a = a1; }

friend int compare (MyClass
obj1, YourClass obj2);

};
void main() {

MyClass o1(10); YourClass
o2(5);
int n = compare(o1, o2); // n = 5

}

int compare (MyClass obj1,
YourClass obj2) {
return (obj1.a – obj2.a);

}

FRIEND FUNCTIONS

10

class YourClass; // a forward
declaration

class MyClass {
int a; // private member

public:
MyClass(int a1) { a = a1; }
int compare (YourClass obj) {

return (a – obj.a)
}

};

class YourClass {
int a; // private member

public:
YourClass(int a1) { a = a1; }
friend int MyClass::compare
(YourClass obj);

};
void main() {

MyClass o1(10); Yourclass
o2(5);
int n = o1.compare(o2); // n = 5

}

CONVERSION FUNCTION

Used to convert an object of one type into an
object of another type.
A conversion function automatically converts an
object into a value that is compatible with the
type of the expression in which the object is used.
General form: operator type() {return value;}
type is the target type and value is the value of
the object after conversion.
No parameter can be specified.
Must be a member of the class for which it
performs the conversion.
Examples: From Book. 11

D
epartm

ent of C
S

E
, B

U
E

T

CONVERSION FUNCTION

D
epartm

ent of C
S

E
, B

U
E

T

12

#include <iostream>
using namespace std;

class coord
{

int x, y;
public:

coord(int i, int j){ x = i; y = j; }
operator int() { return x*y; }

};

int main
{

coord o1(2, 3), o2(4, 3);
int i;

i = o1;
// automatically converts to integer
cout << i << ‘\n’;

i = 100 + o2;
// automatically converts to integer
cout << i << ‘\n’;

return 0;
}

CONVERSION FUNCTION

Suppose we have the following two classes:
Cartesian Coordinate: CCoord
Polar Coordinate: PCoord

Can we use conversion function to perform
conversion between them?

CCoord c(10, 20);
PCoord p(15, 120);

p = c;
c = p; 13

D
epartm

ent of C
S

E
, B

U
E

T

STATIC CLASS MEMBERS
A class member can be declared as static
Only one copy of a static variable exists – no
matter how many objects of the class are created

All objects share the same variable
It can be private, protected or public
A static member variable exists before any object
of its class is created
In essence, a static class member is a global
variable that simply has its scope restricted to
the class in which it is declared

14

STATIC CLASS MEMBERS
When we declare a static data member within a
class, we are not defining it
Instead, we must provide a definition for it
elsewhere, outside the class
To do this, we re-declare the static variable,
using the scope resolution operator to identify
which class it belongs to
All static member variables are initialized to 0
by default

15

STATIC CLASS MEMBERS
The principal reason static member variables are
supported by C++ is to avoid the need for global
variables
Member functions can also be static

Can access only other static members of its class
directly
Need to access non-static members through an
object of the class
Does not have a this pointer
Cannot be declared as virtual, const or volatile

static member functions can be accessed through an
object of the class or can be accessed independent of
any object, via the class name and the scope
resolution operator

Usual access rules apply for all static members
Example: static.cpp

16

STATIC CLASS MEMBERS

17

class myclass {
static int x;

public:
static int y;
int getX() { return x; }
void setX(int x) {

myclass::x = x;
}

};
int myclass::x = 1;
int myclass::y = 2;

void main () {
myclass ob1, ob2;
cout << ob1.getX() << endl; // 1
ob2.setX(5);
cout << ob1.getX() << endl; // 5
cout << ob1.y << endl; // 2
myclass::y = 10;
cout << ob2.y << endl; // 10
// myclass::x = 100;
// will produce compiler error

}

CONST MEMBER FUNCTIONS AND
MUTABLE

When a class member is declared as const it can’t
modify the object that invokes it.
A const object can’t invoke a non-const member
function.
But a const member function can be called by
either const or non-const objects.
If you want a const member function to modify
one or more member of a class but you don’t want
the function to be able to modify any of its other
members, you can do this using mutable.
mutable members can modified by a const
member function.
Examples: From Book. 18

D
epartm

ent of C
S

E
, B

U
E

T

LECTURE CONTENTS
Teach Yourself C++

Chapter 3 (Full, with exercises)
Chapter 13 (13.2,13.3 and 13.4)

19

	A Closer Look at Classes
	Assigning Objects
	Passing Objects to Functions
	Passing Objects to Functions
	Returning Objects from Functions
	Friend Functions
	Friend Functions
	Friend Functions
	Friend Functions
	Friend Functions
	Conversion Function
	Conversion Function
	Conversion Function
	Static class members
	Static class members
	Static class members
	Static class members
	const Member Functions and mutable
	Lecture Contents

