
ARRAYS,
POINTERS
AND
REFERENCES

1

ARRAYS OF OBJECTS
Arrays of objects of class can be declared just like
other variables.

class A{ … };
A ob[4];
ob[0].f1(); // let f1 is public in A
ob[3].x = 3; // let x is public in A

In this example, all the objects of the array are
initialized using the default constructor of A.
If A does not have a default constructor, then the
above array declaration statement will produce
compiler error.

2

ARRAYS OF OBJECTS
If a class type includes a constructor, an array of
objects can be initialized
Initializing array elements with the constructor
taking an integer argument
class A{ public: int a; A(int n) { a = n; } };

A ob[2] = { A(-1), A(-2) };
A ob2[2][2] = { A(-1), A(-2), A(-3), A(-4) };

In this case, the following shorthand form can
also be used

A ob[2] = { -1, -2 };

3

ARRAYS OF OBJECTS
If a constructor takes two or more arguments,
then only the longer form can be used.
class A{ public: int a, b; A(int n, int m) { a =

n; b = m; } };
A ob[2] = { A(1, 2), A(3, 4) };
Aob2[2][2] = { A(1, 1), A(2, 2), A(3, 3), A(4,
4) };

4

ARRAYS OF OBJECTS
• We can also mix no argument, one argument and

multi-argument constructor calls in a single
array declaration.

class A
{
public:

A() { … } // must be present for this
example to be compiled
A(int n) { … }
A(int n, int m) { … }

};
– A ob[3] = { A(), A(1),A(2, 3) }; 5

USING POINTERS TO OBJECTS
We can take the address of objects using the
address operator (&) and store it in object
pointers.

A ob; A *p = &ob;
We have to use the arrow (->) operator instead of
the dot (.) operator while accessing a member
through an object pointer.

p->f1(); // let f1 is public in A
Pointer arithmetic using an object pointer is the
same as it is for any other data type.

When incremented, it points to the next object.
When decremented, it points to the previous
object. 6

THIS POINTER
A special pointer in C++ that points to the object
that generates the call to the method
Let,

class A{ public: void f1() { … } };
A ob; ob.f1();

The compiler automatically adds a parameter
whose type is “pointer to an object of the class” in
every non-static member function of the class.
It also automatically calls the member function
with the address of the object through which the
function is invoked.
So the above example works as follows –

class A{ public: void f1(A *this) { … } };
A ob; ob.f1(&ob); 7

THIS POINTER
It is through this pointer that every non-static
member function knows which object’s members
should be used.

class A
{

int x;
public:

void f1()
{

x = 0; // this->x = 0;
}

}; 8

THIS POINTER
this pointer is generally used to access member
variables that have been hidden by local
variables having the same name inside a member
function.

9

class A{
int x;

public:
A(int x) {

x = x; // only copies
local ‘x’ to itself; the
member ‘x’ remains
uninitialized
this->x = x; // now

its ok
}

void f1() {
int x = 0;
cout << x; // prints

value of local ‘x’
cout << this->x; //

prints value of
member ‘x’

}
};

USING NEW AND DELETE
C++ introduces two operators for dynamically
allocating and deallocating memory :

p_var = new type
new returns a pointer to dynamically allocated
memory that is sufficient to hold a data obect
of type type
delete p_var
releases the memory previously allocated by
new

Memory allocated by new must be released using
delete
The lifetime of an object is directly under our
control and is unrelated to the block structure of
the program 10

USING NEW AND DELETE
In case of insufficient memory, new can report
failure in two ways

By returning a null pointer
By generating an exception

The reaction of new in this case varies from
compiler to compiler

11

USING NEW AND DELETE
Advantages

No need to use sizeof operator while using
new.
New automatically returns a pointer of the
specified type.
In case of objects, new calls dynamically
allocates the object and call its constructor
In case of objects, delete calls the destructor of
the object being released

12

USING NEW AND DELETE
Dynamically allocated objects can be given initial
values.

int *p = new int;
Dynamically allocates memory to store an integer value
which contains garbage value.

int *p = new int(10);
Dynamically allocates memory to store an integer value and
initializes that memory to 10.
Note the use of parenthesis () while supplying initial values.

13

USING NEW AND DELETE
class A{ int x; public: A(int n) { x = n; } };

A *p = new A(10);
Dynamically allocates memory to store a A object and calls
the constructor A(int n) for this object which initializes x to
10.

A *p = new A;
It will produce compiler error because in this example
class A does not have a default constructor.

14

USING NEW AND DELETE
We can also create dynamically allocated arrays
using new.
But deleting a dynamically allocated array needs
a slight change in the use of delete.
It is not possible to initialize an array that
is dynamically allocated.

int *a= new int[10];
Creates an array of 10 integers
All integers contain garbage values
Note the use of square brackets []

delete [] a;
Delete the entire array pointed by a
Note the use of square brackets []

15

USING NEW AND DELETE
It is not possible to initialize an array that is
dynamically allocated, in order to create an array
of objects of a class, the class must have a default
constructor.

16

class A {
int x;

public:
A(int n) { x = n; } };

A *array = new A[10];
// compiler error

class A {
int x;

public:
A() { x = 0; }
A(int n) { x = n; } };

A *array = new A[10]; //
no error

// use array
delete [] array;

USING NEW AND DELETE
A *array = new A[10];

The default constructor is called for all the
objects.

delete [] array;
Destructor is called for all the objects present
in the array.

17

REFERENCES
A reference is an implicit pointer
Acts like another name for a variable
Can be used in three ways

A reference can be passed to a function
A reference can be returned by a function
An independent reference can be created

Reference variables are declared using the &
symbol

void f(int &n);
Unlike pointers, once a reference becomes
associated with a variable, it cannot refer to
other variables 18

REFERENCES

19

Using pointer -
void f(int *n) {

*n = 100;
}
void main() {

int i = 0;
f(&i);
cout << i; // 100

}

Using reference -
void f(int &n) {

n = 100;
}
void main() {

int i = 0;
f(i);
cout << i; // 100

}

REFERENCES
A reference parameter fully automates the call-
by-reference parameter passing mechanism

No need to use the address operator (&) while
calling a function taking reference parameter

Inside a function that takes a reference
parameter, the passed variable can be
accessed without using the indirection
operator (*)

20

REFERENCES
Advantages

The address is automatically passed

Reduces use of ‘&’ and ‘*’

When objects are passed to functions using
references, no copy is made

Hence destructors are not called when the
functions ends

Eliminates the troubles associated with
multiple destructor calls for the same object 21

PASSING REFERENCES TO
OBJECTS

We can pass objects to functions using references

No copy is made, destructor is not called when
the function ends

As reference is not a pointer, we use the dot
operator (.) to access members through an object
reference

22

PASSING REFERENCES TO
OBJECTS

23

class myclass {
int x;

public:
myclass() {

x = 0;
cout << “Constructing\n”;

}
~myclass() {

cout << “Destructing\n”;
}
void setx(int n) { x = n; }
int getx() { return x; }

};
void f(myclass &o) {

o.setx(500);
}

void main() {
myclass obj;
cout << obj.getx() << endl;
f(obj);
cout << obj.getx() << endl;

}

Output:
Constructing
0
500
Destructing

RETURNING REFERENCES
A function can return a reference
Allows a functions to be used on the left side of
an assignment statement
But, the object or variable whose reference is
returned must not go out of scope
So, we should not return the reference of a local
variable

For the same reason, it is not a good practice
to return the pointer (address) of a local
variable from a function

24

RETURNING REFERENCES

25

int x; // global variable
int &f() {

return x;
}
void main() {

x = 1;
cout << x << endl;
f() = 100;
cout << x << endl;
x = 2;
cout << f() << endl;

}

Output:
1
100
2

So, here f() can be used to both
set the value of x and read the
value of x

Example: From Book(151 –
153)

INDEPENDENT REFERENCES
Simply another name for another variable
Must be initialized when it is declared

int &ref; // compiler error
int x = 5; int &ref = x; // ok
ref = 100;
cout << x; // prints “100”

An independent reference can refer to a constant
int &ref=10; // compile error
const int &ref = 10;

26

RESTRICTIONS
We cannot reference another reference

Doing so just becomes a reference of the
original variable

We cannot obtain the address of a reference
Doing so returns the address of the original
variable
Memory allocated for references are hidden
from the programmer by the compiler

We cannot create arrays of references
We cannot reference a bit-field
References must be initialized unless they
are members of a class, are return values,
or are function parameters

27

LECTURE CONTENTS
Teach Yourself C++

Chapter 4 (See All Exercise)

28

	Arrays, Pointers �and �References
	Arrays of Objects
	Arrays of Objects
	Arrays of Objects
	Arrays of Objects
	Using Pointers to Objects
	this Pointer
	this Pointer
	this Pointer
	Using new and delete
	Using new and delete
	Using new and delete
	Using new and delete
	Using new and delete
	Using new and delete
	Using new and delete
	Using new and delete
	References
	References
	References
	References
	Passing References to Objects
	Passing References to Objects
	Returning References
	Returning References
	Independent References
	Restrictions
	Lecture Contents

