
INHERITANCE
Chapter 7

D
epartm

ent of C
SE, BU

ET

1



OBJECTIVES

 Base class access control
 Using protected members
 Visibility of base class members in derived class
 Constructors, destructors, and inheritance
 Multiple inheritance
 Virtual base classes

2

D
epartm

ent of C
SE, BU

ET



BASE CLASS ACCESS CONTROL

 class derived-class-name : access base-
class-name { … };

Here access is one of three keywords
 public
 private
 protected

Use of access is optional
 It is private by default if the derived class is a 

class
 It is public by default if the derived class is a 

struct
3

D
epartm

ent of C
SE, BU

ET



USING PROTECTED MEMBERS

 Cannot be directly accessed by non-related 
classes and functions

 But can be directly accessed by the derived 
classes

 Can also be used with structures

4

D
epartm

ent of C
SE, BU

ET



VISIBILITY OF BASE CLASS
MEMBERS IN DERIVED CLASS

Member access 
specifier in base 

class

Member visibility in derived class

Type of Inheritance

Private Protected Public

Private Not Inherited Not Inherited Not Inherited

Protected Private Protected Protected

Public Private Protected Public

Department of CSE, BUET 5

When a class (derived) inherits from another (base) class, the visibility 
of the members of the base class in the derived class is as follows.



CONSTRUCTORS, DESTRUCTORS, 
AND INHERITANCE
Both base class and derived class can 

have constructors and destructors.
Constructor functions are executed in the 

order of derivation.
Destructor functions are executed in the 

reverse order of derivation.
While working with an object of a derived 

class, the base class constructor and 
destructor are always executed no matter 
how the inheritance was done (private, 
protected or public).

6

D
epartm

ent of C
SE, BU

ET



CONSTRUCTORS, DESTRUCTORS, 
AND INHERITANCE (CONTD.)

D
epartm

ent of C
SE, BU

ET

7

 class base {
 public:
 base() {
 cout << “Constructing base class\n”;
 }
 ~base() {
 cout << “Destructing base class\n”;
 }
 };
 class derived : public base {
 public:
 derived() {
 cout << “Constructing derived 

class\n”;
 }
 ~derived() {
 cout << “Destructing derived 

class\n”;
 }
 };

 void main() {
 derived obj;
 }

 Output:
 Constructing base class
 Constructing derived class
 Destructing derived class
 Destructing base class



CONSTRUCTORS, DESTRUCTORS, 
AND INHERITANCE (CONTD.)
 If a base class constructor takes parameters then 

it is the responsibility of the derived class 
constructor(s) to collect them and pass them to 
the base class constructor using the following 
syntax -
 derived-constructor(arg-list) : base(arg-list) { … }
 Here “base” is the name of the base class

 It is permissible for both the derived class and 
the base class to use the same argument.

 It is also possible for the derived class to ignore 
all arguments and just pass them along to the 
base class.

8

D
epartm

ent of C
SE, BU

ET



CONSTRUCTORS, DESTRUCTORS, 
AND INHERITANCE (CONTD.)

D
epartm

ent of C
SE, BU

ET

9

 class MyBase {
 public:
 int x;
 MyBase(int m) { x = m; }
 };
 class MyDerived : public MyBase {
 public:
 int y;
 MyDerived() : MyBase(0) { y = 0; }
 MyDerived(int a) : MyBase(a)
 {
 y = 0;
 }
 MyDerived(int a, int b) : MyBase(a)
 {
 y = b;
 }
 };

 void main() {
 MyDerived o1; // x = 0, y = 0
 MyDerived o2(5); // x = 5, y = 0
 MyDerived o3(6, 7); // x = 6, y = 7
 }

 As “MyBase” does not have a default 
(no argument) constructor, every 
constructor of “MyDerived” must 
pass the parameters required by the 
“MyBase” constructor.



MULTIPLE INHERITANCE

A derived class can inherit more than one base 
class in two ways.
 Option-1: By a chain of inheritance

 b1 -> d1 -> dd1 -> ddd1 -> …
Here b1 is an indirect base class of both dd1 and ddd1
Constructors are executed in the order of inheritance
Destructors are executed in the reverse order

 Option-2: By directly inheriting more than one base 
class
 class d1 : access b1, access b2, …, access bN { … }
Constructors are executed in the order, left to right, that the 

base classes are specified
Destructors are executed in the reverse order 10

D
epartm

ent of C
SE, BU

ET



MULTIPLE INHERITANCE (CONTD.)
D

epartm
ent of C

SE, BU
ET

11Option - 1 Option - 2

b1

d1

ddd1

dd1

b1 b2 b3

d1



VIRTUAL BASE CLASSES

Consider the 
situation shown.

Two copies of Base
are included in D3.

This causes 
ambiguity when a 
member of Base is 
directly used by D3.

12

D
epartm

ent of C
SE, BU

ET

Base Base

D1 D2

D3



VIRTUAL BASE CLASSES (CONTD.)
D

epartm
ent of C

SE, BU
ET

13

 class Base {
 public:
 int i;
 };
 class D1 : public Base {
 public:
 int j;
 };
 class D2 : public Base {
 public:
 int k;
 };

 class D3 : public D1, public 
D2 {

 // contains two copies of ‘i’
 };
 void main() {
 D3 obj;
 obj.i = 10; // ambiguous, 

compiler error
 obj.j = 20; // no problem
 obj.k = 30; // no problem
 obj.D1::i = 100; // no 

problem
 obj.D2::i = 200; // no 

problem 
 }



VIRTUAL BASE CLASSES (CONTD.)
D

epartm
ent of C

SE, BU
ET

14

 class Base {
 public:
 int i;
 };
 class D1 : virtual public Base {
 public:
 int j;
 }; // activity of D1 not affected
 class D2 : virtual public Base {
 public:
 int k;
 }; // activity of D2 not affected

 class D3 : public D1, public D2 {
 // contains only one copy of ‘i’
 }; // no change in this class 

definition
 void main() {
 D3 obj;
 obj.i = 10; // no problem
 obj.j = 20; // no problem
 obj.k = 30; // no problem
 obj.D1::i = 100; // no problem, 

overwrites ‘10’
 obj.D2::i = 200; // no problem, 

overwrites ‘100’ 
 }



LECTURE CONTENTS

 Teach Yourself C++
 Chapter 7 (Full, with exercise)
 Study the examples from the book carefully

15

D
epartm

ent of C
SE, BU

ET


