
VIRTUAL FUNCTIONS
Chapter 10

D
epartm

ent of C
SE, BU

ET

1

OBJECTIVES

Polymorphism in C++
Pointers to derived classes
 Important point on inheritance
 Introduction to virtual functions
Virtual destructors
More about virtual functions
Final comments
Applying polymorphism

2

D
epartm

ent of C
SE, BU

ET

POLYMORPHISM IN C++
 2 types

 Compile time polymorphism
 Uses static or early binding
 Example: Function and operator overloading

 Run time polymorphism
 Uses dynamic or early binding
 Example: Virtual functions

3

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES

C++ allows base class pointers to point to
derived class objects.

Let we have –
 class base { … };
 class derived : public base { … };

Then we can write –
 base *p1; derived d_obj; p1 = &d_obj;
 base *p2 = new derived;

4

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES
(CONTD.)
Using a base class pointer (pointing to a

derived class object) we can access only
those members of the derived object that
were inherited from the base.
 It is different from the behavior that Java

shows.
 We can get Java-like behavior using virtual

functions.
This is because the base pointer has

knowledge only of the base class.
 It knows nothing about the members

added by the derived class.
5

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES
(CONTD.)

D
epartm

ent of C
SE, BU

ET

6

 class base {
 public:
 void show() {
 cout << “base\n”;
 }
 };
 class derived : public base {
 public:
 void show() {
 cout << “derived\n”;
 }
 };

 void main() {
 base b1;
 b1.show(); // base
 derived d1;
 d1.show(); // derived
 base *pb = &b1;
 pb->show(); // base
 pb = &d1;
 pb->show(); // base
 }
 All the function calls here

are statically bound

POINTERS TO DERIVED CLASSES
(CONTD.)
 While it is permissible for a base class pointer to

point to a derived object, the reverse is not true.
 base b1;
 derived *pd = &b1; // compiler error

 We can perform a downcast with the help of
type-casting, but should use it with caution (see
next slide).

7

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES
(CONTD.)

 Let we have –
 class base { … };
 class derived : public base { … };
 class xyz { … }; // having no relation with “base” or “derived”

 Then if we write –
 base b_obj; base *pb; derived d_obj; pb = &d_obj; // ok
 derived *pd = pb; // compiler error
 derived *pd = (derived *)pb; // ok, valid downcasting
 xyz obj; // ok
 pd = (derived *)&obj; // invalid casting, no compiler error, but

may cause run-time error
 pd = (derived *)&b_obj; // invalid casting, no compiler error,

but may cause run-time error
8

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES
(CONTD.)

 In fact using type-casting, we can use pointer of
any class to point to an object of any other class.
 The compiler will not complain.
 During run-time, the address assignment will also

succeed.
 But if we use the pointer to access any member, then it

may cause run-time error.
 Java prevents such problems by throwing

“ClassCastException” in case of invalid casting.
9

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES
(CONTD.)

Pointer arithmetic is relative to the data type
the pointer is declared as pointing to.

 If we point a base pointer to a derived object
and then increment the pointer, it will not be
pointing to the next derived object.

 It will be pointing to (what it thinks is) the
next base object !!!

Be careful about this.
10

D
epartm

ent of C
SE, BU

ET

IMPORTANT POINT ON INHERITANCE

 In C++, only public inheritance supports the perfect IS-A
relationship.

 In case of private and protected inheritance, we cannot treat a
derived class object in the same way as a base class object
 Public members of the base class becomes private or protected in the

derived class and hence cannot be accessed directly by others using
derived class objects

 If we use private or protected inheritance, we cannot assign the
address of a derived class object to a base class pointer directly.
 We can use type-casting, but it makes the program logic and

structure complicated.
 This is one of the reason for which Java only supports public

inheritance.

11

D
epartm

ent of C
SE, BU

ET

INTRODUCTION TO VIRTUAL FUNCTIONS

A virtual function is a member function
that is declared within a base class and
redefined (called overriding) by a derived
class.

 It implements the “one interface, multiple
methods” philosophy that underlies
polymorphism.

The keyword virtual is used to designate
a member function as virtual.

Supports run-time polymorphism with the
help of base class pointers.

12

D
epartm

ent of C
SE, BU

ET

INTRODUCTION TO VIRTUAL
FUNCTIONS (CONTD.)
 While redefining a virtual function in a derived

class, the function signature must match the
original function present in the base class.

 So, we call it overriding, not overloading.
 When a virtual function is redefined by a derived

class, the keyword virtual is not needed (but can
be specified if the programmer wants).

 The “virtual”-ity of the member function
continues along the inheritance chain.

 A class that contains a virtual function is
referred to as a polymorphic class.

13

D
epartm

ent of C
SE, BU

ET

INTRODUCTION TO VIRTUAL
FUNCTIONS (CONTD.)

D
epartm

ent of C
SE, BU

ET

14

 class base {
 public:
 virtual void show() {
 cout << “base\n”;
 }
 };
 class derived : public base {
 public:
 void show() {
 cout << “derived\n”;
 }
 };

 void main() {
 base b1;
 b1.show(); // base - (s.b.)
 derived d1;
 d1.show(); // derived – (s.b.)
 base *pb = &b1;
 pb->show(); // base - (d.b.)
 pb = &d1;
 pb->show(); // derived

(d.b.)
 }
 Here,

 s.b. = static binding
 d.b. = dynamic binding

INTRODUCTION TO VIRTUAL
FUNCTIONS (CONTD.)

D
epartm

ent of C
SE, BU

ET

15

 class base {
 public:
 virtual void show() {
 cout << “base\n”;
 }
 };
 class d1 : public base {
 public:
 void show() {
 cout << “derived-1\n”;
 }
 };

 class d2 : public base {
 public:
 void show() {
 cout << “derived-2\n”;
 }
 };
 void main() {
 base *pb; d1 od1; d2 od2;
 int n;
 cin >> n;
 if (n % 2) pb = &od1;
 else pb = &od2;
 pb->show(); // guess what ??
 }Run-time polymorphism

VIRTUAL DESTRUCTORS

 Constructors cannot be virtual, but destructors
can be virtual.

 It ensures that the derived class destructor is
called when a base class pointer is used while
deleting a dynamically created derived class
object.

16

D
epartm

ent of C
SE, BU

ET

VIRTUAL DESTRUCTORS (CONTD.)
D

epartm
ent of C

SE, BU
ET

17

 class base {
 public:
 ~base() {
 cout << “destructing base\n”;
 }
 };
 class derived : public base {
 public:
 ~derived() {
 cout << “destructing derived\n”;
 }
 };

 void main() {
 base *p = new derived;
 delete p;
 }

 Output:
 destructing base

Using non-virtual destructor

VIRTUAL DESTRUCTORS (CONTD.)
D

epartm
ent of C

SE, BU
ET

18

 class base {
 public:
 virtual ~base() {
 cout << “destructing base\n”;
 }
 };
 class derived : public base {
 public:
 ~derived() {
 cout << “destructing derived\n”;
 }
 };

 void main() {
 base *p = new derived;
 delete p;
 }

 Output:
 destructing derived
 destructing base

Using virtual destructor

MORE ABOUT VIRTUAL FUNCTIONS

 If we want to omit the body of a virtual
function in a base class, we can use pure
virtual functions.
 virtual ret-type func-name(param-list) = 0;

 It makes a class an abstract class.
 We cannot create any objects of such classes.

 It forces derived classes to override it.
 Otherwise they become abstract too.

19

D
epartm

ent of C
SE, BU

ET

MORE ABOUT VIRTUAL
FUNCTIONS (CONTD.)
Pure virtual function

 Helps to guarantee that a derived class will
provide its own redefinition.

We can still create a pointer to an abstract
class
 Because it is at the heart of run-time

polymorphism
When a virtual function is inherited, so is

its virtual nature.
We can continue to override virtual

functions along the inheritance hierarchy. 20

D
epartm

ent of C
SE, BU

ET

FINAL COMMENTS

Run-time polymorphism is not automatically
activated in C++.

We have to use virtual functions and base
class pointers to enforce and activate run-time
polymorphism in C++.

But, in Java, run-time polymorphism is
automatically present as all non-static
methods of a class are by default virtual in
nature.
 We just need to use superclass references to point to

subclass objects to achieve run-time polymorphism
in Java. 21

D
epartm

ent of C
SE, BU

ET

APPLYING POLYMORPHISM

 Early binding
 Normal functions, overloaded functions
 Nonvirtual member and friend functions
 Resolved at compile time
 Very efficient
 But lacks flexibility

 Late binding
 Virtual functions accessed via a base class pointer
 Resolved at run-time
 Quite flexible during run-time
 But has run-time overhead; slows down program

execution
22

D
epartm

ent of C
SE, BU

ET

LECTURE CONTENTS

 Teach Yourself C++
 Chapter 10 (Full, with exercises)
 Study the examples from the book carefully

23

D
epartm

ent of C
SE, BU

ET

