
VIRTUAL FUNCTIONS
Chapter 10

D
epartm

ent of C
SE, BU

ET

1

OBJECTIVES

Polymorphism in C++
Pointers to derived classes
 Important point on inheritance
 Introduction to virtual functions
Virtual destructors
More about virtual functions
Final comments
Applying polymorphism

2

D
epartm

ent of C
SE, BU

ET

POLYMORPHISM IN C++
 2 types

 Compile time polymorphism
 Uses static or early binding
 Example: Function and operator overloading

 Run time polymorphism
 Uses dynamic or early binding
 Example: Virtual functions

3

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES

C++ allows base class pointers to point to
derived class objects.

Let we have –
 class base { … };
 class derived : public base { … };

Then we can write –
 base *p1; derived d_obj; p1 = &d_obj;
 base *p2 = new derived;

4

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES
(CONTD.)
Using a base class pointer (pointing to a

derived class object) we can access only
those members of the derived object that
were inherited from the base.
 It is different from the behavior that Java

shows.
 We can get Java-like behavior using virtual

functions.
This is because the base pointer has

knowledge only of the base class.
 It knows nothing about the members

added by the derived class.
5

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES
(CONTD.)

D
epartm

ent of C
SE, BU

ET

6

 class base {
 public:
 void show() {
 cout << “base\n”;
 }
 };
 class derived : public base {
 public:
 void show() {
 cout << “derived\n”;
 }
 };

 void main() {
 base b1;
 b1.show(); // base
 derived d1;
 d1.show(); // derived
 base *pb = &b1;
 pb->show(); // base
 pb = &d1;
 pb->show(); // base
 }
 All the function calls here

are statically bound

POINTERS TO DERIVED CLASSES
(CONTD.)
 While it is permissible for a base class pointer to

point to a derived object, the reverse is not true.
 base b1;
 derived *pd = &b1; // compiler error

 We can perform a downcast with the help of
type-casting, but should use it with caution (see
next slide).

7

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES
(CONTD.)

 Let we have –
 class base { … };
 class derived : public base { … };
 class xyz { … }; // having no relation with “base” or “derived”

 Then if we write –
 base b_obj; base *pb; derived d_obj; pb = &d_obj; // ok
 derived *pd = pb; // compiler error
 derived *pd = (derived *)pb; // ok, valid downcasting
 xyz obj; // ok
 pd = (derived *)&obj; // invalid casting, no compiler error, but

may cause run-time error
 pd = (derived *)&b_obj; // invalid casting, no compiler error,

but may cause run-time error
8

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES
(CONTD.)

 In fact using type-casting, we can use pointer of
any class to point to an object of any other class.
 The compiler will not complain.
 During run-time, the address assignment will also

succeed.
 But if we use the pointer to access any member, then it

may cause run-time error.
 Java prevents such problems by throwing

“ClassCastException” in case of invalid casting.
9

D
epartm

ent of C
SE, BU

ET

POINTERS TO DERIVED CLASSES
(CONTD.)

Pointer arithmetic is relative to the data type
the pointer is declared as pointing to.

 If we point a base pointer to a derived object
and then increment the pointer, it will not be
pointing to the next derived object.

 It will be pointing to (what it thinks is) the
next base object !!!

Be careful about this.
10

D
epartm

ent of C
SE, BU

ET

IMPORTANT POINT ON INHERITANCE

 In C++, only public inheritance supports the perfect IS-A
relationship.

 In case of private and protected inheritance, we cannot treat a
derived class object in the same way as a base class object
 Public members of the base class becomes private or protected in the

derived class and hence cannot be accessed directly by others using
derived class objects

 If we use private or protected inheritance, we cannot assign the
address of a derived class object to a base class pointer directly.
 We can use type-casting, but it makes the program logic and

structure complicated.
 This is one of the reason for which Java only supports public

inheritance.

11

D
epartm

ent of C
SE, BU

ET

INTRODUCTION TO VIRTUAL FUNCTIONS

A virtual function is a member function
that is declared within a base class and
redefined (called overriding) by a derived
class.

 It implements the “one interface, multiple
methods” philosophy that underlies
polymorphism.

The keyword virtual is used to designate
a member function as virtual.

Supports run-time polymorphism with the
help of base class pointers.

12

D
epartm

ent of C
SE, BU

ET

INTRODUCTION TO VIRTUAL
FUNCTIONS (CONTD.)
 While redefining a virtual function in a derived

class, the function signature must match the
original function present in the base class.

 So, we call it overriding, not overloading.
 When a virtual function is redefined by a derived

class, the keyword virtual is not needed (but can
be specified if the programmer wants).

 The “virtual”-ity of the member function
continues along the inheritance chain.

 A class that contains a virtual function is
referred to as a polymorphic class.

13

D
epartm

ent of C
SE, BU

ET

INTRODUCTION TO VIRTUAL
FUNCTIONS (CONTD.)

D
epartm

ent of C
SE, BU

ET

14

 class base {
 public:
 virtual void show() {
 cout << “base\n”;
 }
 };
 class derived : public base {
 public:
 void show() {
 cout << “derived\n”;
 }
 };

 void main() {
 base b1;
 b1.show(); // base - (s.b.)
 derived d1;
 d1.show(); // derived – (s.b.)
 base *pb = &b1;
 pb->show(); // base - (d.b.)
 pb = &d1;
 pb->show(); // derived

(d.b.)
 }
 Here,

 s.b. = static binding
 d.b. = dynamic binding

INTRODUCTION TO VIRTUAL
FUNCTIONS (CONTD.)

D
epartm

ent of C
SE, BU

ET

15

 class base {
 public:
 virtual void show() {
 cout << “base\n”;
 }
 };
 class d1 : public base {
 public:
 void show() {
 cout << “derived-1\n”;
 }
 };

 class d2 : public base {
 public:
 void show() {
 cout << “derived-2\n”;
 }
 };
 void main() {
 base *pb; d1 od1; d2 od2;
 int n;
 cin >> n;
 if (n % 2) pb = &od1;
 else pb = &od2;
 pb->show(); // guess what ??
 }Run-time polymorphism

VIRTUAL DESTRUCTORS

 Constructors cannot be virtual, but destructors
can be virtual.

 It ensures that the derived class destructor is
called when a base class pointer is used while
deleting a dynamically created derived class
object.

16

D
epartm

ent of C
SE, BU

ET

VIRTUAL DESTRUCTORS (CONTD.)
D

epartm
ent of C

SE, BU
ET

17

 class base {
 public:
 ~base() {
 cout << “destructing base\n”;
 }
 };
 class derived : public base {
 public:
 ~derived() {
 cout << “destructing derived\n”;
 }
 };

 void main() {
 base *p = new derived;
 delete p;
 }

 Output:
 destructing base

Using non-virtual destructor

VIRTUAL DESTRUCTORS (CONTD.)
D

epartm
ent of C

SE, BU
ET

18

 class base {
 public:
 virtual ~base() {
 cout << “destructing base\n”;
 }
 };
 class derived : public base {
 public:
 ~derived() {
 cout << “destructing derived\n”;
 }
 };

 void main() {
 base *p = new derived;
 delete p;
 }

 Output:
 destructing derived
 destructing base

Using virtual destructor

MORE ABOUT VIRTUAL FUNCTIONS

 If we want to omit the body of a virtual
function in a base class, we can use pure
virtual functions.
 virtual ret-type func-name(param-list) = 0;

 It makes a class an abstract class.
 We cannot create any objects of such classes.

 It forces derived classes to override it.
 Otherwise they become abstract too.

19

D
epartm

ent of C
SE, BU

ET

MORE ABOUT VIRTUAL
FUNCTIONS (CONTD.)
Pure virtual function

 Helps to guarantee that a derived class will
provide its own redefinition.

We can still create a pointer to an abstract
class
 Because it is at the heart of run-time

polymorphism
When a virtual function is inherited, so is

its virtual nature.
We can continue to override virtual

functions along the inheritance hierarchy. 20

D
epartm

ent of C
SE, BU

ET

FINAL COMMENTS

Run-time polymorphism is not automatically
activated in C++.

We have to use virtual functions and base
class pointers to enforce and activate run-time
polymorphism in C++.

But, in Java, run-time polymorphism is
automatically present as all non-static
methods of a class are by default virtual in
nature.
 We just need to use superclass references to point to

subclass objects to achieve run-time polymorphism
in Java. 21

D
epartm

ent of C
SE, BU

ET

APPLYING POLYMORPHISM

 Early binding
 Normal functions, overloaded functions
 Nonvirtual member and friend functions
 Resolved at compile time
 Very efficient
 But lacks flexibility

 Late binding
 Virtual functions accessed via a base class pointer
 Resolved at run-time
 Quite flexible during run-time
 But has run-time overhead; slows down program

execution
22

D
epartm

ent of C
SE, BU

ET

LECTURE CONTENTS

 Teach Yourself C++
 Chapter 10 (Full, with exercises)
 Study the examples from the book carefully

23

D
epartm

ent of C
SE, BU

ET

