VIRTUAL FUNCTIONS
Chapter 10

13Ng ‘ISD Jo wswuedag

OBJECTIVES

Polymorphism in C++

Pointers to derived classes
Important point on inheritance
Introduction to virtual functions
Virtual destructors

More about virtual functions
Final comments

Applying polymorphism

13Ng ‘3SD Jo wswuedsg

POLYMORPHISM IN C++

2 types
Compile time polymorphism
o Uses static or early binding
o Example: Function and operator overloading
Run time polymorphism
o Uses dynamic or early binding
o Example: Virtual functions

13Ng ‘3SD Jo wswuedsg

POINTERS TO DERIVED CLASSES

C++ allows base class pointers to point to
derived class objects.
Let we have —
class base { ... };
class derived : public base{ ... };
Then we can write —
base *pl; derived d_obj; p1 = &d_obj;
base *p2 = new derived,;

13Ng ‘3SD Jo wswuedsg

POINTERS TO DERIVED CLASSES
(CONTD.)

Using a base class pointer (pointing to a
derived class object) we can access only
those members of the derived object that
were inherited from the base.

It Is different from the behavior that Java
shows.

We can get Java-like behavior using virtual
functions.

This Is because the base pointer has
knowledge only of the base class.

It knows nothing about the members
added by the derived class.

13Ng ‘3SD Jo wswuedsg

POINTERS TO DERIVED CLASSES

(CONTD.)
class base { void main() {
public: base bl;
void show() { bl.show(); // base
cout << “base\n’; derived d1;

}
I3
class derived : public base {
public:

void show() {

cout << “derived\n”;

}
3

d1.show(); // derived

base *pb = &b1;

pb->show(); // base

pb = &d1;

pb->show(); // base
}

All the function calls here
are statically bound

13Ng ‘3SD Jo wswuedsg

POINTERS TO DERIVED CLASSES
(CONTD.)

While it is permissible for a base class pointer to
point to a derived object, the reverse is not true.
base bl
derived *pd = &b1; // compiler error
We can perform a downcast with the help of

type-casting, but should use it with caution (see
next slide).

13Ng ‘3SD Jo wswuedsg

POINTERS TO DERIVED CLASSES
(CONTD.)

Let we have —
class base { ... };
class derived : public base { ... };
class xyz { ... }; // having no relation with “base” or “derived”

Then if we write —
base b_obj; base *pb; derived d_obj; pb = &d_obj; // ok
derived *pd = pb; // compiler error
derived *pd = (derived *)pb; // ok, valid downcasting
Xyz obj; // ok

pd = (derived *)&obyj; // invalid casting, no compiler error, but
may cause run-time error

pd = (derived *)&b_obj; // invalid casting, no compiler error,
but may cause run-time error

13Ng ‘3SD Jo wswuedsg

POINTERS TO DERIVED CLASSES
(CONTD.)

In fact using type-casting, we can use pointer of
any class to point to an object of any other class.
The compiler will not complain.

During run-time, the address assignment will also
succeed.

But if we use the pointer to access any member, then it
may cause run-time error.
Java prevents such problems by throwing
“ClassCastException” in case of invalid casting.

13Ng ‘3SD Jo wswuedsg

POINTERS TO DERIVED CLASSES
(CONTD.)

Pointer arithmetic is relative to the data type
the pointer Is declared as pointing to.

If we point a base pointer to a derived object
and then increment the pointer, it will not be
pointing to the next derived object.

It will be pointing to (what it thinks is) the
next base object !!!

Be careful about this.

13Ng ‘3SD Jo wswuedsg

IMPORTANT POINT ON INHERITANCE

In C++, only public inheritance supports the perfect 1S-A
relationship.

In case of private and protected inheritance, we cannot treat a
derived class object in the same way as a base class object
Public members of the base class becomes private or protected in the

derived class and hence cannot be accessed directly by others using
derived class objects

If we use private or protected inheritance, we cannot assign the
address of a derived class object to a base class pointer directly.

We can use type-casting, but it makes the program logic and
structure complicated.

This is one of the reason for which Java only supports public
Inheritance.

13Ng ‘3SD Jo wswuedsg

INTRODUCTION TO VIRTUAL FUNCTIONS

A virtual function is a member function
that is declared within a base class and
redefined (called overriding) by a derived
class.

It implements the “one interface, multiple
methods” philosophy that underlies
polymorphism.

The keyword virtual is used to designate
a member function as virtual.

Supports run-time polymorphism with the
help of base class pointers.

13Ng ‘3SD Jo wswuedsg

INTRODUCTION TO VIRTUAL
FUNCTIONS (CONTD.)

While redefining a virtual function in a derived
class, the function signature must match the
original function present in the base class.

So, we call it overriding, not overloading.

When a virtual function is redefined by a derived
class, the keyword virtual is not needed (but can
be specified If the programmer wants).

The “virtual™-ity of the member function
continues along the inheritance chain.

A class that contains a virtual function is
referred to as a polymorphic class.

13Ng ‘3SD Jo wswuedsg

INTRODUCTION TO VIRTUAL
FUNCTIONS (CONTD.)

class base {
public:
virtual void show() {
cout << “pbase\n”;

}
I3
class derived : public base {
public:
void show() {
cout << “derived\n”;

}
3

void main() {
base bl;
bl.show(); // base - (s.b.)
derived d1i,;
d1.show(); // derived — (s.b.)
base *pb = &b1;
pb->show(); // base - (d.b.)
pb = &d1,

pb->show(); // derived
(d.b.)

}
Here,
s.b. = static binding

13Ng ‘3SD Jo wswuedsg

d.b. = dynamic binding

INTRODUCTION TO VIRTUAL
FUNCTIONS (CONTD.)

class base { class d2 : public base {
public: public: g
virtual void show() { void show() { E
cout << “base\n”; cout << “derived-2\n”; s
) }
¥ It o
class d1 : public base { void main() { E
public: base *pb; d1 odl; d2 od2;
void show() { Int n;
cout << “derived-1\n"; cin >>n;
} If (N % 2) pb = &od1,;
} else pb = &od2;
_Lo—ph=>Show(); // guess what ??
_[Run-time polymorphism % }

VIRTUAL DESTRUCTORS

Constructors cannot be virtual, but destructors
can be virtual.

It ensures that the derived class destructor is
called when a base class pointer is used while
deleting a dynamically created derived class
object.

13Ng ‘3SD Jo wswuedsg

VIRTUAL DESTRUCTORS (CONTD.)

class base {
public:
~base() {
cout << “destructing base\n”;

}
%
class derived : public base {
public:
~derived() {
cout << “destructing derived\n”;

}
J

void main() {
base *p = new derived;
delete p;

}

Output:
destructing base

13Ng ‘3SD Jo wswuedsg

Using non-virtual destructor

VIRTUAL DESTRUCTORS (CONTD.)

class base {
public:
virtual ~base() {
cout << “destructing base\n”;

}
%
class derived : public base {
public:
~derived() {
cout << “destructing derived\n”;

}
J

void main() {
base *p = new derived;
delete p;

}

Output:
destructing derived
destructing base

13Ng ‘3SD Jo wswuedsg

Using virtual destructor

MORE ABOUT VIRTUAL FUNCTIONS

If we want to omit the body of a virtual
function In a base class, we can use pure
virtual functions.

virtual ret-type func-name(param-list) = 0;
It makes a class an abstract class.
We cannot create any objects of such classes.

It forces derived classes to override It.
Otherwise they become abstract too.

13Ng ‘3SD Jo wswuedsg

MORE ABOUT VIRTUAL
FUNCTIONS (CONTD.)

Pure virtual function

Helps to guarantee that a derived class will
provide its own redefinition.
We can still create a pointer to an abstract
class
Because it Is at the heart of run-time
polymorphism
When a virtual function i1s inherited, so IS
Its virtual nature.

We can continue to override virtual
functions along the inheritance hierarchy.

13Ng ‘3SD Jo wswuedsg

FINAL COMMENTS

Run-time polymorphism is not automatically
activated in C++.

We have to use virtual functions and base
class pointers to enforce and activate run-time
polymorphism in C++.

But, in Java, run-time polymorphism is
automatically present as all non-static
methods of a class are by default virtual In
nature.

We just need to use superclass references to point to

subclass objects to achieve run-time polymorphism
In Java.

13Ng ‘3SD Jo wswuedsg

APPLYING POLYMORPHISM

Early binding
Normal functions, overloaded functions
Nonvirtual member and friend functions
Resolved at compile time
Very efficient
But lacks flexibility

Late binding
Virtual functions accessed via a base class pointer
Resolved at run-time
Quite flexible during run-time

But has run-time overhead; slows down program
execution

13Ng ‘3SD Jo wswuedsg

L ECTURE CONTENTS

Teach Yourself C++
Chapter 10 (Full, with exercises)
Study the examples from the book carefully

13Ng ‘3SD Jo wswuedsg

