
MANIPULATING
STRINGS
Resources
[1] Object Oriented Programming with C++ (3rd

Edition) E Balagurusamy
[2] Teach Yourself C++ (3rd Edition) H Schildt

INTRODUCTION

A string is a sequence of character.

We have used null terminated <char> arrays (C-
strings or C-style strings) to store and
manipulate strings.

ANSI C++ provides a class called string.

We must include <string> in our program.

AVAILABLE OPERATIONS

Creating string objects.
Reading string objects from keyboard.
Displaying string objects to the screen.
Finding a substring from a string.
Modifying string objects.
Adding string objects.
Accessing characters in a string.
Obtaining the size of string.
And many more.

COMMONLY USED STRING CONSTRUCTORS

String();
// For creating an empty string.

String(const char *str);
// For creating a string object from a null-terminated
string.

String(const string &str);
// For creating a string object from other string object.

CREATING STRING OBJECTS

string s1, s3; // Using constructor with no
arguments.
string s2(“xyz”); // Using one-argument constructor.
s1 = s2; // Assigning string objects
s3 = “abc” + s2; // Concatenating strings

cin >> s1; // Reading from keyboard (one word)
cout << s2; // Display the content of s2
getline(cin, s1) // Reading from keyboard a line of text

s3 += s1; // s3 = s3 + s1;
s3 += “abc”; // s3 = s3 + “abc”;

MANIPULATING STRING OBJECTS

string s1(“12345”);
string s2(“abcde”);

s1.insert(4, s2); // s1 = 1234abcde5

s1.erase(4, 5); // s1 = 12345

s2.replace(1, 3, s1); // s2 = a12345e

MANIPULATING STRING OBJECTS

insert()

erase()

replace()

append()

RELATIONAL OPERATIONS

string s1(“ABC”); string s2(“XYZ”);
int x = s1.compare(s2);

x == 0 if s1 == s2
x > 0 if s1 > s2
x < 0 if s1 < s2

Operator Meaning
== Equality
!= Inequality
< Less than

<= Less than or equal
> Greater than

>= Greater than or equal

STRING CHARACTERISTICS

void display(string &str)
{

cout << “Size = ” << str.size() << endl;
cout << “Length = ” << str.length() << endl;
cout << “Capacity = ” << str.capacity() << endl;
cout << “Max Size = ” << str.max_size() << endl;
cout << “Empty: ” << (str.empty() ? “yes” : “no”)
<< endl;
cout << endl << endl;

}

STRING CHARACTERISTICS

Function Task

size() Number of elements currently
stored

length() Number of elements currently
stored

capacity() Total elements that can be stored

max_size() Maximum size of a string object
that a system can support

emply() Return true or 1 if the string is
empty otherwise returns false or 0

resize() Used to resize a string object
(effects only size and length)

ACCESSING CHARACTERS IN STRINGS

Function Task
at() For accessing individual characters
substr() For retrieving a substring
find() For finding a specific substring
find_first_of() For finding the location of first occurrence of the specific

character(s)
find_last_of() For finding the location of first occurrence of the specific

character(s)

[] operator For accessing individual character. Makes the string
object to look like an array.

COMPARING AND SWAPPING

There is another overloaded version of compare

int compare(int start_1, int length_1, string s_2,
int start_2, int length_2)

string s1, s2;
int x = s1.compare(0, 2, s2, 2, 2);

s1.swap(s2)
Exchanges the content of string s1 and s2

LECTURE CONTENTS

[1] Object Oriented Programming with C++ (3rd

Edition) E Balagurusamy
Chapter 15 (Full)

[2] Teach Yourself C++ (3rd Edition) H Schildt
Examples only

Study the examples and exercise from both books
carefully

	Manipulating Strings
	Introduction
	Available Operations
	Commonly Used String Constructors
	Creating String Objects
	Manipulating String Objects
	Manipulating String Objects
	Relational Operations
	String Characteristics
	String Characteristics
	Accessing Characters in Strings
	Comparing and Swapping
	Lecture Contents

