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INTRODUCTION

A string is a sequence of character.

We have used null terminated <char> arrays (C-
strings or C-style strings) to store and 
manipulate strings.

ANSI C++ provides a class called string.

We must include <string> in our program.



AVAILABLE OPERATIONS

Creating string objects.
Reading string objects from keyboard.
Displaying string objects to the screen.
Finding a substring from a string.
Modifying string objects.
Adding string objects.
Accessing characters in a string.
Obtaining the size of string.
And many more.



COMMONLY USED STRING CONSTRUCTORS

String();
// For creating an empty string.

String(const char *str);
// For creating a string object from a null-terminated 
string.

String(const string &str);
// For creating a string object from other string object.



CREATING STRING OBJECTS

string s1, s3; // Using constructor with no 
arguments.
string s2(“xyz”); // Using one-argument constructor.
s1 = s2; // Assigning string objects
s3 = “abc” + s2; // Concatenating strings

cin >> s1; // Reading from keyboard (one word)
cout << s2; // Display the content of s2
getline(cin, s1) // Reading from keyboard a line of text

s3 += s1; // s3 = s3 + s1;
s3 += “abc”; // s3 = s3 + “abc”;



MANIPULATING STRING OBJECTS

string s1(“12345”);
string s2(“abcde”);

s1.insert(4, s2); // s1 = 1234abcde5

s1.erase(4, 5); // s1 = 12345

s2.replace(1, 3, s1); // s2 = a12345e



MANIPULATING STRING OBJECTS

insert()

erase()

replace()

append()



RELATIONAL OPERATIONS

string s1(“ABC”); string s2(“XYZ”);
int x = s1.compare(s2);

x == 0 if s1 == s2
x > 0 if s1 > s2
x < 0 if s1 < s2

Operator Meaning
== Equality
!= Inequality
< Less than

<= Less than or equal
> Greater than

>= Greater than or equal



STRING CHARACTERISTICS

void display(string &str)
{

cout << “Size = ” << str.size() << endl;
cout << “Length = ” << str.length() << endl;
cout << “Capacity = ” << str.capacity() << endl;
cout << “Max Size = ” << str.max_size() << endl;
cout << “Empty: ” << (str.empty() ? “yes” : “no”) 
<< endl;
cout << endl << endl;

}



STRING CHARACTERISTICS

Function Task

size() Number of elements currently 
stored

length() Number of elements currently 
stored

capacity() Total elements that can be stored

max_size() Maximum size of a string object 
that a system can support

emply() Return true or 1 if the string is 
empty otherwise returns false or 0

resize() Used to resize a string object 
(effects only size and length)



ACCESSING CHARACTERS IN STRINGS

Function Task
at() For accessing individual characters
substr() For retrieving a substring
find() For finding a specific substring
find_first_of() For finding the location of first occurrence of the specific 

character(s)
find_last_of() For finding the location of first occurrence of the specific 

character(s)

[] operator For accessing individual character. Makes the string 
object to look like an array.



COMPARING AND SWAPPING

There is another overloaded version of compare

int compare(int start_1, int length_1, string s_2, 
int start_2, int length_2) 

string s1, s2;
int x = s1.compare(0, 2, s2, 2, 2);

s1.swap(s2)
Exchanges the content of string s1 and s2



LECTURE CONTENTS

[1] Object Oriented Programming with C++ (3rd

Edition) E Balagurusamy
Chapter 15 (Full)

[2]  Teach Yourself C++ (3rd Edition) H Schildt
Examples only

Study the examples and exercise from both books 
carefully
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